Thermo-Economic Analysis on Integrated CO2, Organic Rankine Cycles, and NaClO Plant Using Liquefied Natural Gas

نویسندگان

چکیده

The thermal energy conversion of natural gas (NG) using appropriate configuration cycles represents one the best nonrenewable resources because its high heating value and low environmental effects. can be converted to liquefied (LNG), via liquefaction process, which is used as a heat source sink in various multigeneration cycles. In this paper, new cycle proposed LNG sink. This includes CO2 cycle, organic Rankine (ORC), heater, cooler, an NaClO plant, reverse osmosis. generates electrical power, cooling energy, potable water (PW), hydrogen, salt all at same time. For purpose, computer program provided engineering equation solver for exergy, thermo-economic analyses. results each subsystem are validated by previous researches field. system produces 10.53 GWh 276.4 1783 17,280 m3 water, 739.56 tons 383.78 year. efficiency 54.3%, while exergy equal 13.1%. economic evaluation showed that payback period, simple net present value, internal rate return 7.9 years, 6.9 908.9 million USD, 0.138, respectively.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermo-Economic Evaluation of Organic Rankine Cycles for Geothermal Power Generation Using Zeotropic Mixtures

We present a thermo-economic evaluation of binary power plants based on the Organic Rankine Cycle (ORC) for geothermal power generation. The focus of this study is to analyse if an efficiency increase by using zeotropic mixtures as working fluid overcompensates additional requirements regarding the major power plant components. The optimization approach is compared to systems with pure media. B...

متن کامل

Thermo-economic Analysis of Power Cycles

Exergy analysis is based on combined first and second laws of thermodynamics and is a useful tool to analyze the energy systems in a better and more realistic way than an energy analysis, based on the first law of thermodynamics. Combination of exergy from thermodynamics with conventional concepts from engineering economy which is referred to as thermo-economy (exergo-economy) is a valuable too...

متن کامل

Thermo-Economic Analysis of Zeotropic Mixtures and Pure Working Fluids in Organic Rankine Cycles for Waste Heat Recovery "2279

We present a thermo-economic analysis of an Organic Rankine Cycle (ORC) for waste heat recovery. A case study for a heat source temperature of 150 ̋C and a subcritical, saturated cycle is performed. As working fluids R245fa, isobutane, isopentane, and the mixture of isobutane and isopentane are considered. The minimal temperature difference in the evaporator and the condenser, as well as the mi...

متن کامل

Thermo-economic Analysis of Power Cycles

Exergy analysis is based on combined first and second laws of thermodynamics and is a useful tool to analyze the energy systems in a better and more realistic way than an energy analysis, based on the first law of thermodynamics. Combination of exergy from thermodynamics with conventional concepts from engineering economy which is referred to as thermo-economy (exergo-economy) is a valuable too...

متن کامل

Thermodynamic Analysis and Optimization of a Novel Cogeneration System: Combination of a gas Turbine with Supercritical CO2 and Organic Rankine Cycles (TECHNICAL NOTE)

Thermodynamic analysis of a novel combined system which is combination of methane fired gas turbine cogeneration system (CGAM) with a supercritical CO2 recompression Brayton cycle (SCO2) and an Organic Rankine Cycle (ORC) is reported. Also, a comprehensive parametric study is performed to investigate the effects on the performance of the proposed system of some important parameters. Finally, a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energies

سال: 2021

ISSN: ['1996-1073']

DOI: https://doi.org/10.3390/en14102849